Math

Table of contents

Relations

(1)/(a)±(1)/(b) = (b±a)/(ab)

Approximations

Aexp( − τ) ≈ (1 − τ)A, if τ≪1.

f(x)≃f(x0) + (f’(x0))/(1!)(x − x0) + ... + (fn(x0))/(n!)(x − x0)n

Paraxial angles

tanθ ≈ θ

sinθ ≈ θ

cosθ ≈ 1 − (θ2)/(2) ≈ 1

Trigonometric relations

sinα + sinβ = 2sin(α + β)/(2)cos(α − β)/(2) = 2sin(α)/(2)cos(α)/(2) + 2sin(β)/(2)cos(β)/(2)

sinα + sinβ = 2cos2(β)/(2) + sin2(β)/(2) × sin(α)/(2)cos(α)/(2) + 2cos2(α)/(2) + sin2(α)/(2) × sin(β)/(2)cos(β)/(2)

Ellipse

(x2)/(a2) + (y2)/(b2) = 1, where a > b and the focus on x axis.

x = acosθ and y = bsinθ.

The focus are ±c = ±a × e, where the eccentricity is e = (1 − (b2)/(a2)).

Parametric ellipse

Or Trammel of Archimedes is the definition of a ≡ p + q and b = q.

If q ≡ 1, then p = (1 − e2) − 1.

Rotation matrix (Euler angles α, β, γ)

Rx =  1 0 0 0 cosα  − sinα 0 sinα cosα
Ry =  cosβ 0 sinβ 0 1 0  − sinβ 0 cosβ
Rz =  cosγ  − sinγ 0 sinγ cosγ 0 0 0 1
R = RxRyRz

In python:

R = np.dot(Rz,(np.dot(R_x,R_y)))

Gaussian

f(x) = ae − ((x − b)2)/(2c2) + d

 − ∞f(x) dx = ac(2π), since  − ∞e − x2dx = (π).

The scale height H is P = P0e − h ⁄ H.

English

Math expressions in English (PDF)